<label id="aihr5"></label>
    <thead id="aihr5"></thead>

      <thead id="aihr5"><optgroup id="aihr5"></optgroup></thead>
    1. <label id="aihr5"><meter id="aihr5"></meter></label>

        撥號(hào)18861759551

        你的位置:首頁(yè) > 技術(shù)文章 > 使用塑料混合非球面透鏡的優(yōu)點(diǎn)

        技術(shù)文章

        使用塑料混合非球面透鏡的優(yōu)點(diǎn)

        技術(shù)文章

        Advantages of Using Plastic Hybrid Aspheric Lenses

        TECHSPEC® Plastic Hybrid Aspheric Lenses are low cost optical components that lack both spherical and chromatic aberrations. These aspheric lenses provide optical designers with unique, single element solutions for achieving diffraction-limited focusing performance at high numerical apertures with broadband light sources. These aspheric lenses consist of a diffractive surface that has been added to a molded aspheric lens. The aspheric lens eliminates all spherical aberration, while the diffractive surface has a net effect of introducing negative dispersion – when properly tuned to the refractive index and wavelength design of the lens, chromatic aberration is eliminated as well.

         

        Spherical and Chromatic Aberrations

        There are two major forms of axial optical aberrations inherent in common optical lenses: spherical aberration and chromatic aberration. Spherical aberration is an inherent characteristic of any lens whose surface is a section of a sphere. Light originating from the same object point comes to a focus at slightly different points (P and P’), depending on whether the rays pass through the center of the lens or the periphery (Figure 1).

        Figure 1: Spherical Aberration in a Single Positive Lens

         

        igure 2.1: Transverse Chromatic Aberration of a Single Positive Lens

         

        Figure 2.2: Longitudinal Chromatic Aberration of a Single Positive Lens

         

        Chromatic aberration results from material dispersion. Because different colors of light refract by different amounts, an image point formed by light of one color does not coincide with the corresponding image point formed by light of a different color (Figures 2.1 and 2.2).

         

        Important Equations

        Spherical aberration is typically eliminated by substituting an aspherical surface for the more common spherical surface. The surface profile (sag) is given by Equation 1:

        Where

        Z = sag of surface parallel to the optical axis

        s = radial distance from the optical axis

        C = curvature, inverse of radius

        k = conic constant

        A4, A6, A8 = 4th, 6th, 8th… order aspheric terms

         

        However, this does not correct chromatic aberration. Therefore, for a monochromatic light source, the aspheric surface will provide diffraction limited focusing at a single wavelength, but will suffer a large spot size over a broader wavelength.

         

        A diffractive surface will correct the spherical aberration, as shown in Equation 2.

        Where
        Y = radial position from center of lens (for instance, if 0 is the center of the lens, 12.5mm will be the edge of a 25mm diameter lens, etc.)
        nd = index of refraction of the material at 587.6nm
        Step Height = λ/nd-1
        λ = the wavelength of interest

        By combining the two features onto a single element, a component that eliminates both chromatic and spherical aberration is created. That surface is described simply as the sum of the Zasph and Zdiff coefficients.

        For tips on modeling diffractives in Zemax and Code V, visit the Optics Realm blog.

         

        Customer Benefits

        Optical designers often need to focus light at very short distances, or collect and collimate as much light as possible from very divergent light sources. Basic optical principles dictate that a high numerical aperture optical lens is required for either of these scenarios. A high numerical aperture optical lens will typically have a focal length equal to or shorter than the clear aperture of the optical system, allowing the designer to maintain as compact of an optical train as possible.

        For example, an optical designer has multiple options for achieving a focal length that is equal to his clear aperture (a scenario known as an F/1 lens, or a lens with a numerical aperture of 0.50). The simplest option is to use a standard plano-convex lens, available from a number of distributors. Spot diagram, chromatic focal shift graph, polychromatic diffraction MTF, and transverse ray fan plot for the wavelength range of 486 - 656nm are provided for #45-097 25mm Diameter x 25mm FL PCX lens.

         

        PCX Lens

        Figure 3.1: Spot Diagram for #45-097 25mm Dia. x 25mm FL PCX Lens

        Figure 3.2: Chromatic Focal Shift Graph for #45-097 25mm Dia. x 25mm FL PCX Lens

        Figure 3.3: Polychromatic Diffraction MTF Graph for #45-097 25mm Dia. x 25mm FL PCX Lens

        Figure 3.4: Transverse Ray Fan Plot for #45-097 25mm Dia. x 25mm FL PCX Lens

         

        For improved performance, the optical designer could consider an achromatic lens of the same form factor, for example #65-553 25mm Diameter x 25mm Focal Length Achromatic Lens. Again, the same characteristics are shown over the same wavelength range. A 74% decrease in spot size with a 73% decrease in chromatic focal shift can be seen, yielding an MTF of 13 lp/mm at 40% contrast, a substantial gain versus the aforementioned singlet lens.

        Figure 4.1: pot Diagram for #65-553 25mm Dia. x 25mm FL Achromatic Lens

        Figure 4.2: Chromatic Focal Shift Graph for #65-553 25mm Dia. x 25mm FL Achromatic Lens

        Figure 4.3: Polychromatic Diffraction MTF Graph for #65-553 25mm Dia. x 25mm FL Achromatic Lens

        Figure 4.4: Transverse Ray Fan Plot for #65-553 25mm Dia. x 25mm FL Achromatic Lens

        For maximum performance, the optical designer should choose a plastic hybrid aspheric lens. In this scenario, the exact same form factor and wavelength range are used, this time with #65-992 25mm Diameter x 25mm FL Hybrid Aspheric Lens. As shown, this lens provides diffraction limited focusing performance, yielding the optimum performance for the designer.

         

        Plastic Hybrid Lens

        Figure 5.1: Spot Diagram for #65-992 25mm Dia. x 25mm FL Hybrid Aspheric Lens

        Figure 5.2: Chromatic Focal Shift Graph for #65-992 25mm Dia. x 25mm FL Hybrid Aspheric Lens

        Figure 5.3: Polychromatic Diffraction MTF Graph for #65-992 25mm Dia. x 25mm FL Hybrid Aspheric Lens

        Figure 5.4: Transverse Ray Fan Plot for #65-992 25mm Dia. x 25mm FL Hybrid Aspheric Lens

        Comparing the spot diagrams, chromatic focal shift graphs, polychromatic diffraction MTFs, and transverse ray fan plots of a plano-convex (PCX) lens, achromatic lens, and hybrid aspheric lens, it is easy to see the advantages of using plastic hybrid aspheric lenses for achieving diffraction-limited focusing performance at high numerical apertures with broadband light sources.

         

        Selection Guide

        Edmund Optics® TECHSPEC® Plastic Aspheres and TECHSPEC® Plastic Hybrid Aspheres families are both manufactured utilizing Zeon Chemical’s Zeonex E48R material. Zeonex materials feature high transparency, low fluorescence, low birefrengence, low water absorption, and high heat and chemical resistance, making it a superior material vs. other commonly available plastics. Zeonex is a Cylco Olefin Polymer (COP) material.

        Plastic Materials Selection Guide

        Property

        Glass

        Zeonex E48R

        PMMA

        Polycarbonate

        Polystyrene

        Arton®

        Transmission

        Excellent

        Excellent

        Excellent

        Good

        Very Good

        Excellent

        Low Refractive Index

        Excellent

        Excellent

        Excellent

        Poor

        Poor

        Good

        Low Birefringence

        Excellent

        Excellent

        Excellent

        Poor

        Poor

        Excellent

        Low Water Absorption

        Excellent

        Excellent

        Poor

        Good

        Excellent

        Excellent

        Impact Resistance

        Poor

        Good

        Good

        Excellent

        Good

        Excellent

        Moldability

        Fair

        Excellent

        Good

        Excellent

        Excellent

        Good

        Heat Resistance

        Excellent

        Good

        Poor

        Good

        Poor

        Very Good

        Coating Adhesion

        Excellent

        Good

        Fair

        Fair

        Fair

        Good

        聯(lián)系我們

        地址:江蘇省江陰市人民東路1091號(hào)1017室 傳真:0510-68836817 Email:sales@rympo.com
        24小時(shí)在線客服,為您服務(wù)!

        版權(quán)所有 © 2025 江陰韻翔光電技術(shù)有限公司 備案號(hào):蘇ICP備16003332號(hào)-1 技術(shù)支持:化工儀器網(wǎng) 管理登陸 GoogleSitemap

        在線咨詢
        QQ客服
        QQ:17041053
        電話咨詢
        0510-68836815
        關(guān)注微信
        主站蜘蛛池模板: 狠狠色噜噜狠狠狠狠色综合久AV| 97久久久精品综合88久久| 久久―日本道色综合久久| 婷婷五月综合丁香在线| 国产欧美日韩综合AⅤ天堂| 婷婷丁香五月激情综合| 人人狠狠综合久久亚洲| 综合欧美亚洲日本| 亚洲国产综合人成综合网站| 狠狠色丁香婷婷综合精品视频| 久久综合一区二区无码| 曰韩人妻无码一区二区三区综合部| 国产精品九九久久精品女同亚洲欧美日韩综合区 | 久久久久综合国产欧美一区二区 | 色欲香天天天综合网站| 欧美综合缴情五月丁香六月婷| 国内精品综合久久久40p| 久久九色综合九色99伊人| 亚洲国产欧美国产综合久久| 久久综合亚洲欧美成人| 无码专区久久综合久中文字幕| 亚洲欧美综合一区二区三区| 亚洲成A人V欧美综合天堂麻豆| 狼狼综合久久久久综合网| 久久婷婷五月综合色奶水99啪| 99久久婷婷国产综合亚洲| 色狠狠久久AV五月综合| 91在线亚洲综合在线| 国产综合色在线视频区| 亚洲综合精品香蕉久久网97| 亚洲 综合 国产 欧洲 丝袜| 天天av天天翘天天综合网| 一本色道久久88综合日韩精品 | 91精品国产色综合久久| 天天综合天天做天天综合| 狠狠色伊人久久精品综合网| 五月婷婷综合免费| 亚洲国产综合精品中文字幕| 色婷婷六月亚洲综合香蕉| 91精品婷婷国产综合久久| 狠狠色伊人久久精品综合网 |